Multivariate Autoregressive Modelling of fMRI time series
نویسنده
چکیده
We propose the use of Multivariate Autoregressive (MAR) models of fMRI time series to make inferences about functional integration within the human brain. The method is demonstrated with synthetic and real data showing how such models are able to characterise inter-regional dependence. We extend linear MAR models to accommodate nonlinear interactions to model top-down modulatory processes with bilinear terms. MAR models are time series models and thereby model temporal order within measured brain activity. A further benefit of the MAR approach is that connectivity maps may contain loops, yet exact inference can proceed within a linear framework. Model order selection and parameter estimation are implemented using Bayesian methods.
منابع مشابه
Wavelet based time-varying vector autoregressive modelling
Vector autoregressive (VAR) modelling is one of the most popular approaches in multivariate time series analysis. The parameters interpretation is simple, and provide an intuitive identification of relationships and Granger causality among time series. However, the VAR modelling requires stationarity conditions which could not be valid in many practical applications. Locally stationary or time ...
متن کاملFunctional-Coefficient Autoregressive Model and its Application for Prediction of the Iranian Heavy Crude Oil Price
Time series and their methods of analysis are important subjects in statistics. Most of time series have a linear behavior and can be modelled by linear ARIMA models. However, some of realized time series have a nonlinear behavior and for modelling them one needs nonlinear models. For this, many good parametric nonlinear models such as bilinear model, exponential autoregressive model, threshold...
متن کاملMultivariate autoregressive modeling of fMRI time series.
We propose the use of multivariate autoregressive (MAR) models of functional magnetic resonance imaging time series to make inferences about functional integration within the human brain. The method is demonstrated with synthetic and real data showing how such models are able to characterize interregional dependence. We extend linear MAR models to accommodate nonlinear interactions to model top...
متن کاملMultivariate autoregressive modelling of sea level time series from TOPEX/Poseidon satellite altimetry
This work addresses the autoregressive modelling of sea level time series from TOPEX/Poseidon satellite altimetry mission. Datasets from remote sensing applications are typically very large and correlated both in time and space. Multivariate analysis methods are useful tools to summarise and extract information from such large space-time datasets. Multivariate autoregressive analysis is a gener...
متن کاملSimulation of multivariate non-gaussian autoregressive time series with given autocovariance and marginals
A semi-analytic method is proposed for the generation of realizations of a multivariate process of a given linear correlation structure and marginal distribution. This is an extension of a similar method for univariate processes, transforming the autocorrelation of the non-Gaussian process to that of a Gaussian process based on a piece-wise linear marginal transform from non-Gaussian to Gaussia...
متن کامل